Preference Modeling with Possibilistic Networks and

نویسندگان

  • Nahla Ben Amor
  • Didier Dubois
  • Héla Gouider
  • Henri Prade
چکیده

The use of possibilistic networks for representing conditional preference statements on discrete variables has been proposed only recently. The approach uses non-instantiated possibility weights to define conditional preference tables. Moreover, additional information about the relative strengths of these symbolic weights can be taken into account. The fact that at best we have some information about the relative values of these weights acknowledges the qualitative nature of preference specification. These conditional preference tables give birth to vectors of symbolic weights that reflect the preferences that are satisfied and those that are violated in a considered situation. The comparison of such vectors may rely on different orderings: the ones induced by the product-based, or the minimum-based chain rule underlying the possibilistic network, the discrimin, or leximin refinements of the minimum-based ordering, as well as Pareto ordering, and the symmetric Pareto ordering that refines it. A thorough study of the relations between these orderings in presence of vector components that are symbolic rather numerical is presented. In particular, we establish that the product-based ordering and the symmetric Pareto ordering coincide in presence of constraints comparing pairs of symbolic weights. This ordering agrees in the Boolean case with the inclusion between the sets of preference statements that are violated. The symmetric Pareto ordering may be itself refined by the leximin ordering. The paper highlights the merits of product-based possibilistic networks for representing preferences and provides a comparative discussion with CP-nets and OCF-networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Preference Nets and Possibilistic Logic

CP-nets (Conditional preference networks) are a well-known compact graphical representation of preferences in Artificial Intelligence, that can be viewed as a qualitative counterpart to Bayesian nets. In case of binary attributes it captures specific partial orderings over Boolean interpretations where strict preference statements are defined between interpretations which differ by a single fli...

متن کامل

An Interactive Possibilistic Programming Approach to Designing a 3PL Supply Chain Network Under Uncertainty

The design of closed-loop supply chain networks has attracted increasing attention in recent decades with environmental concerns and commercial factors. Due to the rapid growth of knowledge and technology, the complexity of the supply chain operations is increasing daily and organizations are faced with numerous challenges and risks in their management. Most organizations with limited resources...

متن کامل

Possibilistic Conditional Preference Networks

The paper discusses the use of product-based possibilistic networks for representing conditional preference statements on discrete variables. The approach uses non-instantiated possibility weights to define conditional preference tables. Moreover, additional information about the relative strengths of symbolic weights can be taken into account. It yields a partial preference order among possibl...

متن کامل

Preferential Query Answering in the Semantic Web with Possibilistic Networks

In this paper, we explore how ontological knowledge expressed via existential rules can be combined with possibilistic networks (i) to represent qualitative preferences along with domain knowledge, and (ii) to realize preference-based answering of conjunctive queries (CQs). We call these combinations ontological possibilistic networks (OPnets). We define skyline and k-rank answers to CQs under ...

متن کامل

Preferential Query Answering over the Semantic Web with Possibilistic Networks

In this paper, we explore how ontological knowledge expressed via existential rules can be combined with possibilistic networks (i) to represent qualitative preferences along with domain knowledge, and (ii) to realize preference-based answering of conjunctive queries (CQs). We call these combinations ontological possibilistic networks (OP-nets). We define skyline and k-rank answers to CQs under...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016